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Abstract

A micromechanically-based constitutive model for high density polyethylene (HDPE) in small deformations is presented. The micro-
structure of HDPE consists of closely packed crystalline lamellae separated by layers of amorphous polymer. Here a semi-crystalline
polymer is modeled as an aggregate of randomly oriented composite inclusions, each consisting of a stack of parallel lamellae with their
adjacent amorphous layers. For the amorphous phase, the viscoelastic constitutive behavior is modeled, assuming a polydomain liquid-
crystal-like structure and micromechanical parameters such as the elastic constant of distortion and the persistent length of polymer
molecules are used. The viscoplastic behavior at yield is incorporated through the constitutive modeling of the crystalline lamellae.
Constitutive equations for the composite inclusions are proposed and different homogenization schemes for the overall properties discussed.
The intermediate phase linking the lamellae and the amorphous layers is assumed to form a surface layer around each lamella and its role in
the yield behavior of HDPE is discussed.1999 Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction Rheological models do exist for the small deformation
regime (e.g. Refs. [5,6]), but they cannot provide a clear
Semi-crystalline polymers are now widely used as link between the micro and macro scales.
structural materials. At small strains they show strongly In this paper, we develop a small-strain micro/macro
non-linear stress—strain behavior which depends on suchmodel, which enables to simulate the macroscopic behavior
characteristics as the overall crystallinity, the molecular of PE from physically based micromechanical modeling. In
weight, the molecular branch content, etc. Recently, some Section 2 we develop constitutive equations for a composite
micro/macro constitutive models for semi-crystalline inclusion consisting of a stack of crystalline lamellae and
polymers have been elaborated [1,2]. These are the firsttheir adjacent amorphous layers. The viscoelastic behavior
successful steps towards understanding how the microstruc-of the amorphous phase is explained once the elastic distor-
tural evolution during deformation influences the observed tion of the polymer molecules is assumed to be important.
overall behavior of these materials. However, the modeling Viscoplasticity of the lamellae is modeled as in rate-depen-
in Refs. [1,2] is restricted to finite strains, and important dent polycrystalline materials. It is assumed that the
processes at microlevel (e.g. lamellar-to-fibrillar transition) intermediate phase (linking the lamellae and the amorphous
are ignored. layers) forms a surface layer around each lamella. The influ-
In small deformations, it is very important to know how ence of the intermediate phase on the yield behavior is also
the microstructure determines the initial Young’'s modulus discussed.
and the yield stress. An important feature of polymersisthe The overall behavior of an aggregate consisting of
dependence of the initial Young’'s modulus on the yield lamellae stacks is considered in Section 3. Results and
stress [3] which, to our knowledge, has not been explained conclusions are presented in Sections 4 and 5.
yet from a micromechanical point of view. Viscoelasticity The notation used is as follows: scalars are given in italics
of semi-crystalline polymers is due to the amorphous phase(vy), tensors are designated by bold-face symhul$A), the
behavior [4], which has not been explicitly modeled either. order of which is determined by the context. Tensor contrac-
tions over one or two indices are denoted by (-) and (3),
respectively. Tensor (dyadic) products are indicated by
*Corresponding author. (®).
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Table 1 —_—
Slip systems and corresponding resistances for HDPE [2] &
n

Slip system g“ (MPa) x T m©

l N
(100) [001] 8 [
(010) [001] 20 P
{110} [001] 20 -
(100) [010] 13.3
(010) [100] 20 Fig. 2. Shear deformation of a single crystal.
{110} > (110) 17.6

amorphous material into the interlamellar space, which
would lead to microcavities. At small strains, no cavitation

2. Micromechanical constitutive modeling has been registered for PE and therefore this deformation
mode should have negligible contribution to the overall
2.1. Basic structural unit of polyethylene strain. Consequently, the material is modeled as an aggre-

gate of randomly oriented inclusions, which deform only by

The microstructure of PE can be modeled as a two-phaseslip on well-defined planes. The spherulitic morphology is
composite, consisting of flat crystalline lamellae separated neglected because investigations have shown that the
by amorphous layers [2,4]. The lamellae of melt solidified different morphologies have no influence on the mechanical
PE are most often radially arranged in spherulitic structures, properties [3].
thus making the material macroscopically isotropic. It should be noted that a stack of lamellae can accomodate

The PE crystals are formed by association and folding of an arbitrary deformation, whereas a single polymer crystal
long polymer molecules. They possess an orthorhombic cannot because polymer crystals are inextensible in a direc-
symmetry with lattice parameted= 7.4 A, b=4.93 A tion parallel to the polymer chains. Thus, our inclusion has
andc = 2.54 A. The main deformation mode in crystals is five independent slip systems, which enable it to accomo-
the crystallographic slip [4], which takes place on privileged date an arbitrary loading.
planes (see Table 1).

Two deformation mechanisms of amorphous layers have 2 2. Crystalline phase
been identified: interlamellar shear and interlamellar separa-
tion. Experiments show that interlamellar shear is the The deformation in polymer crystals can be described by
dominant deformation mode at small strains of PE [4]. the constitutive relations used for small-molecule crystals.
Here, the interlamellar shear is taken into account with the For simplicity, we assume that the crystals are rigid-visco-
choice of a basic structural unit consisting of a stack of plastic. In a single crystal the resolved shear strelgs
parallel lamellae and their adjacent amorphous layers acting on a particular slip systeris given by the relation
(Fig. 1). In Fig. 1,n denotes the normal unit vector to the [7]:
lamellae surfaces, ardthe unit vector of the direction of
PE molecules in the crystals. Experimental observations ™
show that the chain direction forms an angle with the normal
vector ranging between 17 and °4{2]. In our model
(n,c) = 3C°. For convenience when dealing with the overall
behavior, we call a stack of lamellae and their adjacent R@
amorphous layeréclusion The crystalline phase content
Xc in each inclusion is considered to be equal to the overall
crystallinity of the polymer.

PE is nearly an incompressible material (with Poisson’s
ratio,» = 0.41[1]). Therefore, in order to have interlamellar
separation in a given inclusion, there must be a flow of

¥ =0.:RY, (6h)

whereo is the stress in the crystal ami*’ is the Schmid
tensor attributed to the slip systema)(

1
= E(n(“) ®@m® + m@ @ n@) %)

with n® andm(® being the “slip plane” normal vector and

the “slip direction” vector in this plane, respectively (Fig. 2).
For rate-dependent materials, the resolved shear stress

7 can be related to the corresponding shear fétevia

a power law expression [7]:

o . H o T(a)
3[ ) nY e 7 = yosign(r ’)IWW”‘, €)
1 |

wherey, is a reference strain ratg'® is the shear strength
lamellae — of the slip systemd) andm is the strain rate sensitivity.
amorphous Eqg. (3) suggests that plastic flow is always present on the
layers slip system &) as long as the shear stres® is not identi-

cally equal to zero, but ifr)] < g the viscoplastic shear
Fig. 1. Basic structural unit (inclusion) of PE. rate '“ is negligible.
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intermediate phase ~ n c phasesAn, the intermediate layer volum¥, and the thick-
layer ‘o I/ ness of the layefl;y:
i, aTVAn
lamell =2
amella tl,”, Fint |ﬁn s (5)
Fig. 3. Intermediate phase in PE. where T is the temperature, and, the proportionality
. . _ coefficient.
The total strain rate in the crystal is: Assuming a membrane stress state in the intermediate
¢ — Z JOR®@, @) layer, we can evaluate its surface tensio@s:
a aTAn
o =Fn/V = ——. (6)

where the indexx stands for the slip systems of PE crystal- int

lites. The slip systems and the corresponding resistances for £ more details see Ref. [11].
HDPE crystals at room temperature are given in Table 1. The intermediate phase volume fraction as measured

The slip resistances. of polymer crystals depend oN from Mandelkern et al. [12] changes with crystallinity and
temperature, lamellar thickness and the normal stress actingye assume that it is directly related to the intermediate layer

onthe §|ip plan'es [4’9'10]; Asin Ref. [2] the strain-induced oy ness. The results of these authors show that an increase
hardening of slip systems’ strength is neglected because the, i oyerall crystallinity leads to decrease in the intermedi-

thickness of lamellae (5-25nm) suggests that dislocationsyee \ojyme fraction and, therefore, surface tension will
must be quickly evacuated on lamellae surfaces. increase due to thinner intermediate layers. Here we suggest
The temperature dependence is easily understood as th?hat the “failure” of the intermediate phase can explain the

crystallographic slip is athermally activated process. As for yield behavior at the second yield point where localized
the normal stress dependence, it has been established theftcoarse”) slip and, eventually, lamellar-to-fibrillar transi-

the slip resistances are proportional to the applied normal jo, take place whereas the first yield point (which is more
stress, although the exact mechanism of this behavior is not

sensitive to crystallinity) can be explained with the help of
clear [4]. . . ) dislocation theory. The role of intermediate phase in this
There have been attempts to explain the yield behavior of . <4 is to maintain homogeneous slip in the lamellae and
PE as determined by the nucleation and propagation of , o\ ent them from localization of deformation.
screw dislocations along the chain axisn the lamellae In conclusion, the introduction of the intermediate phase
[8—10]. Inthe dislocation theory, the average lamellar thick- can explain the double yield phenomenon in HDPE reported
ness is directly related to the weakest resistarg®,

; , ; by several authors (e.g. in Ref. [13]). At the first yield point,
(thicker lamellae would have higher resistange®s). The the intermediate phase prevents the lamellae from localiza-

theqry gives .r.easonable results at ‘room temperature bUttion of deformation. The second yield point corresponds to
deviates significantly from the experiment at low tempera- 4 failure of the intermediate phase membrane.
tures and above the-relaxation temperature (about€l).

Our latest work supports the idea first suggested in Ref. [10], 2 3. Amorphous phase
that the length of the Burgers vector along the axis decreases
at higher temperatures. The amorphous layers’ microstructure is not fully under-
We further consider the intermediate phase linking the stood at present, mainly because of the experimental
lamellae and the amorphous layers (Fig. 3) and its role in difficulties stemming from the fact that it cannot be isolated
the yield behavior of PE. The conformational entropy of a and studied separately from the bulk material. A complex
polymer system with homogeneous molecular structure andmicrostructure with ordered microdomains has been
spatial inhomogeneity of density and orientation of polymer proposed in Ref. [15] in order to explain the large viscoplas-
links has been treated in Ref. [11]. We make use of the basictic deformation of the amorphous phase of HDPE. Here we
results of Lifshitz (1969) on the entropy losses because of use a similar idea (though in a different context) in the case
the spatial inhomogeneity in density and/or orientation of small deformation behavior.
which give rise to a density (orientation) gradient. Obvious In the frame of our model, the relation between the shear
sources of such a gradient in semi-crystalline polymers areviscosity and the shear rate in each inclusion can be
the chain folding on lamellae surfaces where the chains extracted (at room temperature, the amorphous phase of
bend more often in one direction than in other and the PE is in a molten state, hence we use the shear viscosity
density difference between crystals and amorphous mate-as a key parameter). In Section 4 we show that it is of a
rial. Thus, in semi-crystalline polymers each crystalline power law type even at very small strain rates. This behavior
lamella should be wrapped with a surface layer (membrane)is fundamentally different for PE melt where a Newtonian
of intermediate phase. plateau is reached at small strain rates [16].
The free energy of the intermediate lay@y,, for a given On the contrary, the polymer chains in the amorphous
lamella is a function of the density difference between two phase are subjected to severe constraints from the lamellae
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From these considerations, the domain radius in steady
state sheaR, should depend on the applied shear rgidn
order to derive a relation betwe®g, Randy, we introduce
the probability for a microdomain, subjected to distant shear
rate y,, to have radiuRR as P = R/R; and require that
in theequilibrium state I, _, = 1. Interaction between the
microdomains is neglected. Then, according to statistical
mechanicsP can be expressed as:

o)

and are situated in extremely thin layers with thickness of whereW is the energy (or work) necessary to shrink the
the order of 10 nm. We suggest that under these conditions,microdomain to radiuRR, ks is the Boltzmann constant
the viscoelastic stress in the amorphous layers is due to theand T the absolute temperature. We assume tais a
resistance of polymer molecules to distortion during defor- power law function ofy, and Eq. (9) can be rewritten as:
mation. Micromechanical interpretations of viscoelasticity ay!
of homogeneous polymer melts speculate that stress isR= Roexp(— a>,
caused either by simultaneous stretching and release of
polymer strands or reptation of polymer molecules in a where W = ay3; n is the “shear rate sensitivity” of the
“tube” of surrounding molecules [16]. These processes are microdomains and is a proportionality constant.
not likely to operate in shearing of thin layers where most of  Introducing Eq. (10) in (8) we obtain the shear viscosity
the molecules are anchored in lamellae, chain ends are situ-of the amorphous phase as:
ated mostly on the lamellae surfaces [4] and entanglements K
are quite stable defects. We introduce a new parameter inm, = Ro% [exp( ) — 1].
a
It is found numerically that the above equation is equiva-

the following, which reflects a different mechanism of
viscoelasticity, i.e. the distortion elastic constant of
molecules. lent to a shear thinning power-law function, = Cv3) up

Our basic assumption is that each amorphous layer can bego very high strain rates, where a plateau 9f(y,) is
modeled as a polydomain structure (Fig. 4). Following reached.
Marrucci [17] and Wissbrun [18], it is assumed that each  In addition to shrinking, the microdomains slide past each
microdomain is in a local free energy minimum. The chain other. Wissbrun [18] derived the compliance modulus
segments in a given microdomain do not have a net orienta-arising from mutual slip of two adjacent microdomains
tion prior to loading. According to the continuum theory of assuming a linear relation between the shear stress and

lamella

amorphous
layer

Ro

lamella

Fig. 4. Amorphous layers’ microstructure.

(©)

(10

2ay4

1D

the nematics class of liquid crystals [19], the distortion free
energyfy of the chains per unit volume in a microdomain
with radius R can be approximated by the following
equation

fy = K/IR? @)

whereK is the average elastic constant of distortion of a
single microdomain. It is related to the distortion elasticity

of polymer molecules and depends on their molecular struc-

ture and temperature.

When a shear ratg, is applied to the amorphous layer,
the domains will change their radius frdRyin the unloaded
state toR in the steady stateR) > R), and the distortion
energy in the layer will increase. From the conservation of
volume, the number of microdomains grows as their radius
diminishes. According to Marrucci [17], the increase of the
distortion energy is equal to the steady state shear stress i
the layer [18]:

K K
E — =

RS

wheren, is the layer’s viscosity.

NaYas 8

n

strain. Similarly, we find the elastic modul@, resulting
from microdomains’ slip:

a*yg)
ks T )

K K
G,= RL =~ ﬁex
wherelL is the persistent length of the polymer molecule (the
maximum chain length which can be considered as part of a
straight line). Note that despite the assumption of a linear
relation between shear stress and str@independs ony,
throughR.

In our viscoelastic modeling, it is assumed that upon
shear, the microdomains’ radius drops instantaneously
from Ry to R. The low energy required to shrink microdo-
mains (see Section 4) suggests that this is a reasonable
approximation. On the contrary, when deformation is
suddenly frozen in a relaxation te®,will increase to its
equilibrium valueR, through thermal diffusion, but this

12

process would take more time than shrinking upon external
forces.

It is well known that two neighboring lamellae are linked
up through numerous tie molecules passing from one
lamella to another as well as through entangled chains
anchored on lamellae surfaces [4]. Upon deformation the
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Na Ga tensors ¢, ande,) acting on the amorphous phase:
A /A A Jd __
o, tM: E(C 12(]'a):E2€a+M
- ———= . P »
: ea+a(C ‘E:ey |, (16
Ea whereE andC(l,) are the fourth order stiffness tensors of

the linear and non-linear elastic moduli, respectively, and
Fig. 5. Three-element rheological model for the amorphous phase behavior.M (1) is a fourth order tensor of the viscous moduiis the
second invariant of the strain rate tenggr
i i i Eqg. (16) by itself does not translate the fact that at small
rubber-like st_retchlng _Of the polymer molecules will strains the dominant mode of deformation of the amorphous
produce elastic stress in the amorphous phase. At smalljjyes is interlamellar shear. We can take this into account

strains, the entropic elasticity can be modeled by v ohother possible extension of the constitutive model from
Neo-Hookean constitutive equations. As a result of the 1D to 3D as follows:

incompressibility, the only material parameter needed is

the rubbery shear modulug, which at microlevel is €, = 7aRa 17
iven as: . . .
given as whereR; is the Schmid tensor constructed from a pair of the
_ lamellae normal vecton and the unit vectom® along the
Ea = vakgT (13 L . . .
projection of the stress vector in the inclusion on the lamel-
lae surface:

with v, being the number of the active polymer strands per
unit volume. t@

So far we dealt with the parameters which should enter in m® = e ; t® =0n —[(o-n)n]n. (18
the amorphous phase constitutive equations. In order to
derive these equations we shall make some additional
hypotheses backed by experimental results. 2.4. Constitutive equations of a single inclusion

A viscoelastic constitutive model for the amorphous
phase is deve]oped based on the well-known three-element The constitutive equations of the inclusion can be derived
rheological model of Fig. 5 (it is shown in Ref. [6] With the help of the assumption of uniform stress in it. This
that viscoelasticity of semi-crystalline polymers is well approximation is suitable for laminate composites subjected
described by overstress theory, a slight modification of to off-plane shear. Lef. be the volume fraction of the
this model). Making the usual assumptions, the following crystalline phase, ang, the volume fraction of the amor-

differential equation relating the shear stresand strainy, phous layers. The total shear rate in the inclusion is then
acting on the amorphous phase is found to be: given by:

9 (T, 9 (E, € = Xc€ t Xa€a (19

—| = )=Eyy, + Vot —| — 14 . . . . .
Ta™ Mgy ( Ga) a¥a na[ Ya™ Gt ( G, ya>], 14 with €. given by Eq. (4) and, obtained as discussed in

Section 2.3.
where a superposed dot denotes a time derivative. If the
coefficientsi, and G, are constants, then Eq. (14) reduces

to the three-elemeiinear viscoelastic model: 3. Overall behavior
Na. E.\. Once the constitutive behavior of a single inclusion is
T2t G_aTa = Bavat ma( 14 Ea)ya' (15 specified, we have to find the overall behavior of an aggre-

gate consisting of randomly oriented similar inclusions.
However, the elastic moduluG, is not a constant but ~ This can be done via homogenizatiorprocedure and the
depends on the strain rafg according to Eq. (12); hence results obtained will be an approximation of the macro.
the differential equation in its general form (14) should be behavior of the material.

used. Unless the material is loaded wjth= constantrom A macra material point is viewed as the center of a
stress-and-strain-free state, Eq. (14) does not reduce to théepresentative volume element (RVE). If a macro. stress
linear case. ¢ is applied to the boundary of the RVE, then it can be

The multiaxial generalization of Eq. (14) is still under shown that [21]:
investigation. One could develop a 3D model along the G = (o). (20)
same lines as the 1D model, and find the following
differential equation relating the total stress and strain  If a macro. strair€ is applied to the boundary of the RVE,



1888 S. Nikolov, I. Doghri / Polymer 41 (2000) 1883—1891

102 [2]. Thus, the overall behavior of HDPE should be closer to
the Reuss lower bound.

4. Results and discussion

The model was checked against uniaxial tensile experi-
ments performed on INSTRON 4204 machine. The material
is HDPE for gas pipes; the crystallinity, measured by
DEC has a value of. = 0.67. The standard tensile speci-
mens have a width of 9.6 mm and a thickness of 3.95 mm in
10 5 e ye ” o their thinner part. The initial gauge length is 50.5 mm, and

shear rate [1/s] the temperature is 2G.
We first consider the strain rate dependence of the overall
Fig. 6. Amorphous phase shear viscosjyvs. shear ratej. stress before yielding (at straih= 0.08) and its micro-
mechanical interpretation. Five different macro-strain
then it is shown that [21]: rates rjave beep6 imposeq50n the jpecimerlg in tensile
tests: e =6%x10°; 3x10 7 3x10 " 3x10 7 and
€ = (e)). (21 3% 10 25 According to our model, the overall streds
splits into two parts:

The brackets{) denote volume averages over all
inclusions. 5= Gy(€,T) + Go(E,T) (22)

The most widely used law describing the interaction o _
between a single inclusion and the aggregate is known aswhere(rvl(e, T)is the' rate-dependent, or viscous stress and
the Voigt model in elasticity or the Taylor model in poly- 9<(€ T) is the elastic stress. They are both temperature-
crystal metal plasticity. dependent but we leave the influence of temperature for

This model suggests that in the aggregate, the strainfurther work. o
within each inclusion is uniform and equal to the imposed Prior to yield, the rate—dgpendent contnbutl.on to the over-
macroscopic strain, i.e. Eq. (21) is trivially satisfied. In this 2l Stress comes from the interlamellar shear in the randomly
approximation, the local compatibility between the inclu- oriented inclusions. We first sub;tract the revergblg part of
sions is satisfied but the local traction equilibrium is not.  the overall stresé(€) in Eq. (22) in order to obtair, () :
When the stress within each inclusion is assumed to be ¥(€) is obtained via relaxation experiment as the stress
uniform and equal to the macroscopic stress (this is the &fter 24 h of relaxation at imposed strain of 8%
Reuss model in elasticity or the Sachs model in plasticity), (7e =~ 8 MP3. We assume that the stress is uniform in all
the local traction equilibrium between the inclusions is trivi- !nclusmns and consider the case O_f most unff’:lvor_able load-
ally satisfied but the local compatibility is violated. ing of the amorphous layers in a given inclusion, i.e. when
Voigt (uniform strain) and Reuss (uniform stress) models the layers are oriented at 4t the tensile axis. The rate-
give upper and lower bounds of the overall behavior, deperxj)ent part of the shear stress in the amorphous phase is
respectively. A more sophisticated model, which usually theny” = ‘Tv./z- . . i
leads to more realistic predictions is the so-called self- N orderto identify the parameter values in a first approx-
consistent scheme. The basic assumption in self-consistenfmation, we assume that the strain rate is also uniform
homogenization schemes is that the state of each inclusionthroughout the material angrior to yield, the plastic strain
in the aggregate is equivalent to that of the inclusion alone "at€ is negligible. Then, for inclusions with amorphous
in a matrix (called homogeneous equivalent medium layers inclined at 45with respect t.o the.tensne axis the
(HEM)) having the same stiffnessas that unknown of average value of the shear rate jg= 3¢/4. The shear
the whole aggregate rate in the amprphous phase will kg = v,/x, (an impor-
We are currently developing and implementing homoge- t@nt remark is that our model works not only in the
nization schemes for the constitutive model of Section 2. In féversible small-strain region but alsmeyondthe yield
our previous work we considered a fully viscoplastic model lImit of the material). We takg, =~ 1 — x. = 0.33.
for each inclusion and used a self-consistent scheme to find At Steady state shear the viscosity is given by
the overall behavior (see Appendix). The results unveil that A
the Voigt model is not appropriate for semi-crystalline poly- 7ma= — (23
mers and the reason for this is that the interaction between Ya
lamellae stacks is much weaker than that between the grainsand we can convert the experimental “macro” stress—strain
in metals. This conclusion is supported by the experimental data in terms of viscosity vs. shear rate in the amorphous
evidence of freely rotating lamellae stacks during deforma- phase of a single inclusion (Fig. 6). It appears that the
tion [4], as well as by other results obtained by other authors observed shear-thinning is of a power-law type and there
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2 given in Fig. 1. This particular choice of the shear direction
enables us to eliminate the plastic deformation prior to an
imposed shear value of 0.1, and thus to obtain indicative

1> results for the macroscopic behavior. The slip resistances of
= K crystalline phase are taken from Table 1. After tuning, the
£ 1 following set of parameters is obtained®, = 1.8 nm;
« n=01, K=16x10"N;, «a=29x10%J4d;
05 T=296K  ks=138x102JK?% L=05nm,
E,= 2 MPa.
With these values, the shear thinning of amorphous phase
0 . . . .
0.02 0.04 006 0.08 0.1 is compared to the experimental data in Fig. 6. The evolu-
shear rate [1/s] tion of microdomain’s radius with strain rate is shown in

Fig. 7. The stress—strain curves for a single inclusion
subjected to simple shear (wifh = 0.67) at three different
strain rates are plotted in Fig. 8. The initial shear modulus
are no signs of Newtonian plateau for viscosity even for does not change when different shear rates are applied
very small strain rates. which is due to the elastic stress in the amorphous layers.
Some micromechanical parameters in our model cannotHowever, the yield stress diminishes with strain rate as
be directly measured despite their physical meaning. Theyobserved in macroscopic experiments.
can be fixed in a narrow range considering the restrictions  Our earlier results (see Appendix) have shown that the
imposed by the experimental evidence and physics. Theshape and relationship between different stress—strain
average thickness of a single amorphous layer for HDPE curves obtained in simple shear for a single inclusion are
is about 10 nm [3]. The hypothesis of a microdomain struc- homothetic to the macroscopic ones when a tensile experi-
ture requires at least two microdomains over this thickness. ment is performed. In this case, the initial shear modulus of
We consider the initial microdomain radius to be a single inclusion corresponds to the macroscopic initial

Fig. 7. Microdomain radiusR, vs. shear ratey,.

Ry = 2 nm. Young modulus and the inclusions’ yield stress in shear is
On the contrary, the persistent lendgtfor PE molecule is related to the macroscopic yield stress in tension.
of the order of 1 nm [11]. The microdomain radiBEannot We also performed simulations by changing the overall

be smaller than this value at any strain rate becéuseahe crystallinity x. in the inclusion (Fig. 9). The imposed shear
smallest possible radius of curvature [18]. At high strain rate is ¢;;3 = 0.001 s . The weakest slip system resis-
rates,R is controlled by the rate parametessand n in tances for different crystallinities y{ = 0.67,0.55,0.43)
Eqg. (10). In additionK has to be estimated before setting are taken to be 8, 6.5, 5 MPa, respectively. The other slip
the values ofr andn. For flexible moleculeK should be of resistances have been proportionally related to the weakest
the order of 10 + 107**N [18] andn must be small in  ones for each crystallinity level. From Fig. 9 it is seen that
order to meet the requirement of minimum microdomain both the initial shear modulus and the shear yield stress
radius. decrease with decreasing crystallinity. The results obtained
With these indications, we can proceed to a more preciseare very similar to those obtained in macroscopic tensile
parameter identification. We make use of shear thinning experiments. The relationshiff”/y. = constanis imposed
experimental results and numerical simulations with a priori but what is more important is that the link between
imposed simple shear am single inclusion The direction the initial shear modulus and the yield stress is obtained as a
of shear is perpendicular to the lamellae normand the direct result of our constitutive modeling keeping all the
tensor components are with respect to the coordinate frameparameters of the amorphous phase model unchanged.

T T T T T T
9 — —
6 — -
= =
& 6 &
=R oy b -
= = Xe = 0.67 —
= f —2. -1 = Xe = 0.5
S 3+ €3y = 107587 —— 4 S oL Xe = 0.43 —— |
¢r(13) = 107557
€raz) = 107487 ——
0 L | Il 1 0 | | | |
0 0.03 0.06 0.09 0.12 0.15 0 0.03 0.06 0.09 0.12 0.15
€1(13) €1(13)

Fig. 8. Strain-rate dependence of inclusion’s shear stress. Fig. 9. Inclusion’s shear stress as a function of crystallinity,
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The model allows us to compute the energy, neces-
sary to shrink a microdomain to radié&s With the above
parameter set, we obtai,~2x 1072*J at strain rate,
7a = 0.005 s 1. At a first glance it seems to be excessively
low. However, the energy necessary to move a dislocation
in a PE crystal in order to set up plastic flow is about
1.6x 107'°J [4]. Therefore, the proposed mechanism of
microdomains’ shrinking should be active well before the
propagation of dislocations in crystals.

Next, we consider the elastic contribution to the overall
stress, .. The rubbery shear modulus obtained from
numerical simulations isE, = 2 MPa, which gives the
number of the active strands per unit volume to be
v, = 05x10°" m3. A more representative estimation is
to find the number of crystal’s unit cells which can occupy

S. Nikolov, I. Doghri / Polymer 41 (2000) 1883-1891

The model can be naturally generalized in order to
consider the temperature and pressure effects.
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Appendix A

the volume necessary for one strand to be formed. Simple

computation suggests that one strand occupies a volume |n a previous work [14], we developed and implemented
where 20 unit cells can be situated, which is a l‘eaSOI’]ab|epure|y viscoplastic models for both the crystalline and
value (a small number of cells implies that the strand’s amorphous phases where the viscoplastic strain rate in a
conformation is near crystalline state and cannot be given inclusion is given by:

stretched much further which is in contradiction with the

experimental evidence). € = Z 7R + Z 7PR?,

The results obtained for a single inclusion should be “ A
considered as a proof of the physical relevance of the where the index: stands for the slip systems of PE crystal-
proposed model. When micro/macro computer simulations Jites andg denotes the additionally introduced slip systems
are run (this is a work in progress), minor changes in the (with a common slip plane perpendicular ) related to
parameter values are possible. interlamellar shear of amorphous layers.

The strengtty® of the slip systems related to amorphous
layer deformation evolves from zero in undeformed state to
some saturation value. The evolution law proposedfor

(A.D)

5. Conclusions is:
. . . dg® ®
The model we presented in this paper explains the 9 _ f, 9™
stress—strain behavior of HDPE at small strains from a de Os
micromechanical point of view. It is valid in the temperature

initi ®) -
range where the amorphous phase state is above its glasgi;i:zgocnoczzf (t)g?ﬁ)m't'?; Srlgsgn(t)sgth(eﬁ)e aSi(\j/glseIr?t tgt(:ain
transition temperature and the crystallinity level is high - €rep q

enough so that the notion aimorphous layermakes in the inclusion. At macrolevelys controls the yield stress

sense. It can be used for other semi-crystalline polymers Iy, Whe_reash determines the |n_|t|al Young's modulis
as long as these conditions are met. The yield stressgy, depends linearly on the overall crys-

The hypothesis of liquid-crystal-ike state of the tallinity, y. [3]. For crystallinity obtained from density

om H om H
amorphous phase (where the distortion energy of macromo_mea§urementsxa =15+ 2'2909 with OJV] . belng the_
lecules determines its viscoelasticity) suggests the existencem.)rnlnal yield stress. On the contrary, numenc;al simulations
of microdomains, which shrink as long as shear deformation with our m_odel allowed us to reIaFe the true yield stress and
is applied. This picture explains well the strain-rate depen- maximal '”te”afne”ar stresg; via Iy = 413+ 2'5395_'
dence of HDPE. The proposed constitutive equations Hence, the relation between crystallinity agbecomes:
describe correctly the observed non-linear stress—strainy. = 23.61 + 5.275); (A.3)
behavior. nom

The viscoplastic deformation in the crystalline lamellae is Iy

also incorporated in the model, which extends its use

beyond yield. The _relatlon between the. initial .Young S self-consistent scheme developed in Ref. [20]. It is supposed
modulus and the yield stress for HDPE is obtained as a ; . :
that the non-linear behavior of HEM can be approximated

result of our constitutive modeling. We introduce the by the following constitutive law (under imposed macro
concept of the intermediate phase acting as a membrane y 9 P '

wrapping each lamella; it gives an interpretation of the strain ratee).
double yield phenomenon reported for HDPE. S=19:¢é+¢9

(A.2)

In the above relationg is expressed in per cent,,
andgs are in MPa.
In order to obtain the overall behavior, we ustaagent

(A.4)
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45 stress—strain curves using Taylor and tangent self-consistent
40 USSR model are shown in Fig. 10.
g 35 e
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