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Abstract

A micromechanically-based constitutive model for high density polyethylene (HDPE) in small deformations is presented. The micro-
structure of HDPE consists of closely packed crystalline lamellae separated by layers of amorphous polymer. Here a semi-crystalline
polymer is modeled as an aggregate of randomly oriented composite inclusions, each consisting of a stack of parallel lamellae with their
adjacent amorphous layers. For the amorphous phase, the viscoelastic constitutive behavior is modeled, assuming a polydomain liquid-
crystal-like structure and micromechanical parameters such as the elastic constant of distortion and the persistent length of polymer
molecules are used. The viscoplastic behavior at yield is incorporated through the constitutive modeling of the crystalline lamellae.
Constitutive equations for the composite inclusions are proposed and different homogenization schemes for the overall properties discussed.
The intermediate phase linking the lamellae and the amorphous layers is assumed to form a surface layer around each lamella and its role in
the yield behavior of HDPE is discussed.q 1999 Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Semi-crystalline polymers are now widely used as
structural materials. At small strains they show strongly
non-linear stress–strain behavior which depends on such
characteristics as the overall crystallinity, the molecular
weight, the molecular branch content, etc. Recently, some
micro/macro constitutive models for semi-crystalline
polymers have been elaborated [1,2]. These are the first
successful steps towards understanding how the microstruc-
tural evolution during deformation influences the observed
overall behavior of these materials. However, the modeling
in Refs. [1,2] is restricted to finite strains, and important
processes at microlevel (e.g. lamellar-to-fibrillar transition)
are ignored.

In small deformations, it is very important to know how
the microstructure determines the initial Young’s modulus
and the yield stress. An important feature of polymers is the
dependence of the initial Young’s modulus on the yield
stress [3] which, to our knowledge, has not been explained
yet from a micromechanical point of view. Viscoelasticity
of semi-crystalline polymers is due to the amorphous phase
behavior [4], which has not been explicitly modeled either.

Rheological models do exist for the small deformation
regime (e.g. Refs. [5,6]), but they cannot provide a clear
link between the micro and macro scales.

In this paper, we develop a small-strain micro/macro
model, which enables to simulate the macroscopic behavior
of PE from physically based micromechanical modeling. In
Section 2 we develop constitutive equations for a composite
inclusion consisting of a stack of crystalline lamellae and
their adjacent amorphous layers. The viscoelastic behavior
of the amorphous phase is explained once the elastic distor-
tion of the polymer molecules is assumed to be important.
Viscoplasticity of the lamellae is modeled as in rate-depen-
dent polycrystalline materials. It is assumed that the
intermediate phase (linking the lamellae and the amorphous
layers) forms a surface layer around each lamella. The influ-
ence of the intermediate phase on the yield behavior is also
discussed.

The overall behavior of an aggregate consisting of
lamellae stacks is considered in Section 3. Results and
conclusions are presented in Sections 4 and 5.

The notation used is as follows: scalars are given in italics
(g ), tensors are designated by bold-face symbols (n, M ), the
order of which is determined by the context. Tensor contrac-
tions over one or two indices are denoted by (·) and (:),
respectively. Tensor (dyadic) products are indicated by
( ^ ).
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2. Micromechanical constitutive modeling

2.1. Basic structural unit of polyethylene

The microstructure of PE can be modeled as a two-phase
composite, consisting of flat crystalline lamellae separated
by amorphous layers [2,4]. The lamellae of melt solidified
PE are most often radially arranged in spherulitic structures,
thus making the material macroscopically isotropic.

The PE crystals are formed by association and folding of
long polymer molecules. They possess an orthorhombic
symmetry with lattice parametersa� 7:4 Å, b� 4:93 Å
andc� 2:54 Å. The main deformation mode in crystals is
the crystallographic slip [4], which takes place on privileged
planes (see Table 1).

Two deformation mechanisms of amorphous layers have
been identified: interlamellar shear and interlamellar separa-
tion. Experiments show that interlamellar shear is the
dominant deformation mode at small strains of PE [4].
Here, the interlamellar shear is taken into account with the
choice of a basic structural unit consisting of a stack of
parallel lamellae and their adjacent amorphous layers
(Fig. 1). In Fig. 1,n denotes the normal unit vector to the
lamellae surfaces, andc the unit vector of the direction of
PE molecules in the crystals. Experimental observations
show that the chain direction forms an angle with the normal
vector ranging between 17 and 408 [2]. In our model
�n; c� � 308. For convenience when dealing with the overall
behavior, we call a stack of lamellae and their adjacent
amorphous layersinclusion. The crystalline phase content
x c in each inclusion is considered to be equal to the overall
crystallinity of the polymer.

PE is nearly an incompressible material (with Poisson’s
ratio,n � 0:41 [1]). Therefore, in order to have interlamellar
separation in a given inclusion, there must be a flow of

amorphous material into the interlamellar space, which
would lead to microcavities. At small strains, no cavitation
has been registered for PE and therefore this deformation
mode should have negligible contribution to the overall
strain. Consequently, the material is modeled as an aggre-
gate of randomly oriented inclusions, which deform only by
slip on well-defined planes. The spherulitic morphology is
neglected because investigations have shown that the
different morphologies have no influence on the mechanical
properties [3].

It should be noted that a stack of lamellae can accomodate
an arbitrary deformation, whereas a single polymer crystal
cannot because polymer crystals are inextensible in a direc-
tion parallel to the polymer chains. Thus, our inclusion has
five independent slip systems, which enable it to accomo-
date an arbitrary loading.

2.2. Crystalline phase

The deformation in polymer crystals can be described by
the constitutive relations used for small-molecule crystals.
For simplicity, we assume that the crystals are rigid-visco-
plastic. In a single crystal the resolved shear stresst (a )

acting on a particular slip system (a ) is given by the relation
[7]:

t�a� � sc : R�a�; �1�
wheresc is the stress in the crystal andR(a ) is the Schmid
tensor attributed to the slip system (a ):

R�a� � 1
2
�n�a� ^ m�a� 1 m�a� ^ n�a�� �2�

with n(a ) andm(a ) being the “slip plane” normal vector and
the “slip direction” vector in this plane, respectively (Fig. 2).

For rate-dependent materials, the resolved shear stress
t (a ) can be related to the corresponding shear rate_g �a� via
a power law expression [7]:

_g �a� � _g0sign�t�a��u t
�a�

g�a�
u1=m; �3�

where _g0 is a reference strain rate,g(a ) is the shear strength
of the slip system (a ) andm is the strain rate sensitivity.

Eq. (3) suggests that plastic flow is always present on the
slip system (a ) as long as the shear stresst (a ) is not identi-
cally equal to zero, but ifut (a )u , g(a ) the viscoplastic shear
rate _g �a� is negligible.
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Table 1
Slip systems and corresponding resistances for HDPE [2]

Slip system g(a ) (MPa)

(100) [001] 8
(010) [001] 20
{110} [001] 20
(100) [010] 13.3
(010) [100] 20
{110} . k11̄0l 17.6

Fig. 1. Basic structural unit (inclusion) of PE.

Fig. 2. Shear deformation of a single crystal.



The total strain rate in the crystal is:

_ec �
X
a

_g �a�R�a�; �4�

where the indexa stands for the slip systems of PE crystal-
lites. The slip systems and the corresponding resistances for
HDPE crystals at room temperature are given in Table 1.

The slip resistances of polymer crystals depend on
temperature, lamellar thickness and the normal stress acting
on the slip planes [4,9,10]. As in Ref. [2], the strain-induced
hardening of slip systems’ strength is neglected because the
thickness of lamellae (5–25 nm) suggests that dislocations
must be quickly evacuated on lamellae surfaces.

The temperature dependence is easily understood as the
crystallographic slip is a thermally activated process. As for
the normal stress dependence, it has been established that
the slip resistances are proportional to the applied normal
stress, although the exact mechanism of this behavior is not
clear [4].

There have been attempts to explain the yield behavior of
PE as determined by the nucleation and propagation of
screw dislocations along the chain axisc in the lamellae
[8–10]. In the dislocation theory, the average lamellar thick-
ness is directly related to the weakest resistance,g(a )

(thicker lamellae would have higher resistancesg(a )). The
theory gives reasonable results at room temperature but
deviates significantly from the experiment at low tempera-
tures and above thea-relaxation temperature (about 608C).
Our latest work supports the idea first suggested in Ref. [10],
that the length of the Burgers vector along the axis decreases
at higher temperatures.

We further consider the intermediate phase linking the
lamellae and the amorphous layers (Fig. 3) and its role in
the yield behavior of PE. The conformational entropy of a
polymer system with homogeneous molecular structure and
spatial inhomogeneity of density and orientation of polymer
links has been treated in Ref. [11]. We make use of the basic
results of Lifshitz (1969) on the entropy losses because of
the spatial inhomogeneity in density and/or orientation
which give rise to a density (orientation) gradient. Obvious
sources of such a gradient in semi-crystalline polymers are
the chain folding on lamellae surfaces where the chains
bend more often in one direction than in other and the
density difference between crystals and amorphous mate-
rial. Thus, in semi-crystalline polymers each crystalline
lamella should be wrapped with a surface layer (membrane)
of intermediate phase.

The free energy of the intermediate layer,Fint, for a given
lamella is a function of the density difference between two

phases,Dn, the intermediate layer volume,V, and the thick-
ness of the layer,l int:

Fint � aTVDn

l2int

; �5�

where T is the temperature, anda, the proportionality
coefficient.

Assuming a membrane stress state in the intermediate
layer, we can evaluate its surface tensions as:

s � Fint=V � aTDn

l2int

: �6�

For more details see Ref. [11].
The intermediate phase volume fraction as measured

from Mandelkern et al. [12] changes with crystallinity and
we assume that it is directly related to the intermediate layer
thickness. The results of these authors show that an increase
in the overall crystallinity leads to decrease in the intermedi-
ate volume fraction and, therefore, surface tension will
increase due to thinner intermediate layers. Here we suggest
that the “failure” of the intermediate phase can explain the
yield behavior at the second yield point where localized
(“coarse”) slip and, eventually, lamellar-to-fibrillar transi-
tion take place whereas the first yield point (which is more
sensitive to crystallinity) can be explained with the help of
dislocation theory. The role of intermediate phase in this
case is to maintain homogeneous slip in the lamellae and
prevent them from localization of deformation.

In conclusion, the introduction of the intermediate phase
can explain the double yield phenomenon in HDPE reported
by several authors (e.g. in Ref. [13]). At the first yield point,
the intermediate phase prevents the lamellae from localiza-
tion of deformation. The second yield point corresponds to
the failure of the intermediate phase membrane.

2.3. Amorphous phase

The amorphous layers’ microstructure is not fully under-
stood at present, mainly because of the experimental
difficulties stemming from the fact that it cannot be isolated
and studied separately from the bulk material. A complex
microstructure with ordered microdomains has been
proposed in Ref. [15] in order to explain the large viscoplas-
tic deformation of the amorphous phase of HDPE. Here we
use a similar idea (though in a different context) in the case
of small deformation behavior.

In the frame of our model, the relation between the shear
viscosity and the shear rate in each inclusion can be
extracted (at room temperature, the amorphous phase of
PE is in a molten state, hence we use the shear viscosity
as a key parameter). In Section 4 we show that it is of a
power law type even at very small strain rates. This behavior
is fundamentally different for PE melt where a Newtonian
plateau is reached at small strain rates [16].

On the contrary, the polymer chains in the amorphous
phase are subjected to severe constraints from the lamellae
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Fig. 3. Intermediate phase in PE.



and are situated in extremely thin layers with thickness of
the order of 10 nm. We suggest that under these conditions,
the viscoelastic stress in the amorphous layers is due to the
resistance of polymer molecules to distortion during defor-
mation. Micromechanical interpretations of viscoelasticity
of homogeneous polymer melts speculate that stress is
caused either by simultaneous stretching and release of
polymer strands or reptation of polymer molecules in a
“tube” of surrounding molecules [16]. These processes are
not likely to operate in shearing of thin layers where most of
the molecules are anchored in lamellae, chain ends are situ-
ated mostly on the lamellae surfaces [4] and entanglements
are quite stable defects. We introduce a new parameter in
the following, which reflects a different mechanism of
viscoelasticity, i.e. the distortion elastic constant of
molecules.

Our basic assumption is that each amorphous layer can be
modeled as a polydomain structure (Fig. 4). Following
Marrucci [17] and Wissbrun [18], it is assumed that each
microdomain is in a local free energy minimum. The chain
segments in a given microdomain do not have a net orienta-
tion prior to loading. According to the continuum theory of
the nematics class of liquid crystals [19], the distortion free
energyfd of the chains per unit volume in a microdomain
with radius R can be approximated by the following
equation

fd � K=R2 �7�
whereK is the average elastic constant of distortion of a
single microdomain. It is related to the distortion elasticity
of polymer molecules and depends on their molecular struc-
ture and temperature.

When a shear rate_ga is applied to the amorphous layer,
the domains will change their radius fromR0 in the unloaded
state toR in the steady state (R0 . R), and the distortion
energy in the layer will increase. From the conservation of
volume, the number of microdomains grows as their radius
diminishes. According to Marrucci [17], the increase of the
distortion energy is equal to the steady state shear stress in
the layer [18]:

K

R2 2
K

R2
0

� ha _ga; �8�

whereha is the layer’s viscosity.

From these considerations, the domain radius in steady
state shear,R, should depend on the applied shear rate_ga. In
order to derive a relation betweenR0, Rand _ga we introduce
the probability for a microdomain, subjected to distant shear
rate _ga, to have radiusR as P� R=R0 and require that
in theequilibrium state Pu _ga�0 � 1. Interaction between the
microdomains is neglected. Then, according to statistical
mechanics,P can be expressed as:

P� exp 2
W

kBT

� �
; �9�

whereW is the energy (or work) necessary to shrink the
microdomain to radiusR, kB is the Boltzmann constant
and T the absolute temperature. We assume thatW is a
power law function of_ga and Eq. (9) can be rewritten as:

R� R0exp 2
a _gn

a

kBT

� �
; �10�

where W � a _gn
a; n is the “shear rate sensitivity” of the

microdomains anda is a proportionality constant.
Introducing Eq. (10) in (8) we obtain the shear viscosity

of the amorphous phase as:

ha � K

�R0�2 _ga
exp

2a _gn
a

kBT

� �
2 1

� �
: �11�

It is found numerically that the above equation is equiva-
lent to a shear thinning power-law function�ha � C _gm

a � up
to very high strain rates, where a plateau ofha� _ga� is
reached.

In addition to shrinking, the microdomains slide past each
other. Wissbrun [18] derived the compliance modulus
arising from mutual slip of two adjacent microdomains
assuming a linear relation between the shear stress and
strain. Similarly, we find the elastic modulusGa resulting
from microdomains’ slip:

Ga � K
RL
� K

R0L
exp

a _gn
a

kBT

� �
; �12�

whereL is the persistent length of the polymer molecule (the
maximum chain length which can be considered as part of a
straight line). Note that despite the assumption of a linear
relation between shear stress and strain,Ga depends on_ga

throughR.
In our viscoelastic modeling, it is assumed that upon

shear, the microdomains’ radius drops instantaneously
from R0 to R. The low energy required to shrink microdo-
mains (see Section 4) suggests that this is a reasonable
approximation. On the contrary, when deformation is
suddenly frozen in a relaxation test,R will increase to its
equilibrium valueR0 through thermal diffusion, but this
process would take more time than shrinking upon external
forces.

It is well known that two neighboring lamellae are linked
up through numerous tie molecules passing from one
lamella to another as well as through entangled chains
anchored on lamellae surfaces [4]. Upon deformation the
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rubber-like stretching of the polymer molecules will
produce elastic stress in the amorphous phase. At small
strains, the entropic elasticity can be modeled by
Neo-Hookean constitutive equations. As a result of the
incompressibility, the only material parameter needed is
the rubbery shear modulusEa, which at microlevel is
given as:

Ea � nakBT �13�

with na being the number of the active polymer strands per
unit volume.

So far we dealt with the parameters which should enter in
the amorphous phase constitutive equations. In order to
derive these equations we shall make some additional
hypotheses backed by experimental results.

A viscoelastic constitutive model for the amorphous
phase is developed based on the well-known three-element
rheological model of Fig. 5 (it is shown in Ref. [6]
that viscoelasticity of semi-crystalline polymers is well
described by overstress theory, a slight modification of
this model). Making the usual assumptions, the following
differential equation relating the shear stressta and strainga

acting on the amorphous phase is found to be:

ta 1 ha
2

2t
ta

Ga

� �
� Eaga 1 ha _ga 1

2

2t
Ea

Ga
ga

� �� �
; �14�

where a superposed dot denotes a time derivative. If the
coefficientsEa andGa are constants, then Eq. (14) reduces
to the three-elementlinear viscoelastic model:

ta 1
ha

Ga
_ta � Eaga 1 ha 1 1

Ea

Ga

� �
_ga: �15�

However, the elastic modulusGa is not a constant but
depends on the strain rate_ga according to Eq. (12); hence
the differential equation in its general form (14) should be
used. Unless the material is loaded with_ga � constantfrom
stress-and-strain-free state, Eq. (14) does not reduce to the
linear case.

The multiaxial generalization of Eq. (14) is still under
investigation. One could develop a 3D model along the
same lines as the 1D model, and find the following
differential equation relating the total stress and strain

tensors (sa andea) acting on the amorphous phase:

sa 1 M :
2

2t
�C21 : sa� � E : ea 1 M

: _ea 1
2

2t
�C21 : E : ea�

� �
; �16�

whereE andC(I2) are the fourth order stiffness tensors of
the linear and non-linear elastic moduli, respectively, and
M (I2) is a fourth order tensor of the viscous moduli;I2 is the
second invariant of the strain rate tensor_ea.

Eq. (16) by itself does not translate the fact that at small
strains the dominant mode of deformation of the amorphous
layers is interlamellar shear. We can take this into account
by another possible extension of the constitutive model from
1D to 3D as follows:

_ea � _gaRa; �17�
whereRa is the Schmid tensor constructed from a pair of the
lamellae normal vectorn and the unit vectorm(a) along the
projection of the stress vector in the inclusion on the lamel-
lae surface:

m�a� � t�a�

it�a�i
; t�a� � s·n 2 ��s·n�·n�n: �18�

2.4. Constitutive equations of a single inclusion

The constitutive equations of the inclusion can be derived
with the help of the assumption of uniform stress in it. This
approximation is suitable for laminate composites subjected
to off-plane shear. Letx c be the volume fraction of the
crystalline phase, andxa the volume fraction of the amor-
phous layers. The total shear rate in the inclusion is then
given by:

_eI � xc _ec 1 xa _ea �19�
with _ec given by Eq. (4) and_ea obtained as discussed in
Section 2.3.

3. Overall behavior

Once the constitutive behavior of a single inclusion is
specified, we have to find the overall behavior of an aggre-
gate consisting of randomly oriented similar inclusions.
This can be done via ahomogenizationprocedure and the
results obtained will be an approximation of the macro.
behavior of the material.

A macro. material point is viewed as the center of a
representative volume element (RVE). If a macro. stress
�s is applied to the boundary of the RVE, then it can be
shown that [21]:

�s � ksIl: �20�
If a macro. strain�e is applied to the boundary of the RVE,
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then it is shown that [21]:

�e � keIl: �21�
The brackets k l denote volume averages over all

inclusions.
The most widely used law describing the interaction

between a single inclusion and the aggregate is known as
the Voigt model in elasticity or the Taylor model in poly-
crystal metal plasticity.

This model suggests that in the aggregate, the strain
within each inclusion is uniform and equal to the imposed
macroscopic strain, i.e. Eq. (21) is trivially satisfied. In this
approximation, the local compatibility between the inclu-
sions is satisfied but the local traction equilibrium is not.

When the stress within each inclusion is assumed to be
uniform and equal to the macroscopic stress (this is the
Reuss model in elasticity or the Sachs model in plasticity),
the local traction equilibrium between the inclusions is trivi-
ally satisfied but the local compatibility is violated.

Voigt (uniform strain) and Reuss (uniform stress) models
give upper and lower bounds of the overall behavior,
respectively. A more sophisticated model, which usually
leads to more realistic predictions is the so-called self-
consistent scheme. The basic assumption in self-consistent
homogenization schemes is that the state of each inclusion
in the aggregate is equivalent to that of the inclusion alone
in a matrix (called homogeneous equivalent medium
(HEM)) having the same stiffness�c as that -unknown- of
the whole aggregate.

We are currently developing and implementing homoge-
nization schemes for the constitutive model of Section 2. In
our previous work we considered a fully viscoplastic model
for each inclusion and used a self-consistent scheme to find
the overall behavior (see Appendix). The results unveil that
the Voigt model is not appropriate for semi-crystalline poly-
mers and the reason for this is that the interaction between
lamellae stacks is much weaker than that between the grains
in metals. This conclusion is supported by the experimental
evidence of freely rotating lamellae stacks during deforma-
tion [4], as well as by other results obtained by other authors

[2]. Thus, the overall behavior of HDPE should be closer to
the Reuss lower bound.

4. Results and discussion

The model was checked against uniaxial tensile experi-
ments performed on INSTRON 4204 machine. The material
is HDPE for gas pipes; the crystallinityx c measured by
DEC has a value ofxc � 0:67. The standard tensile speci-
mens have a width of 9.6 mm and a thickness of 3.95 mm in
their thinner part. The initial gauge length is 50.5 mm, and
the temperature is 238C.

We first consider the strain rate dependence of the overall
stress before yielding (at strain�e � 0:08) and its micro-
mechanical interpretation. Five different macro-strain
rates have been imposed on the specimens in tensile
tests: _�e � 6 × 1026; 3 × 1025; 3 × 1024; 3 × 1023; and
3 × 1022 s21. According to our model, the overall stress�s
splits into two parts:

�s � �sv� _�e;T�1 �se� �e;T� �22�
where �sv� _�e;T� is the rate-dependent, or viscous stress and
�se� �e;T� is the elastic stress. They are both temperature-
dependent but we leave the influence of temperature for
further work.

Prior to yield, the rate-dependent contribution to the over-
all stress comes from the interlamellar shear in the randomly
oriented inclusions. We first substract the reversible part of
the overall stress�se� �e� in Eq. (22) in order to obtain�sv� _�e� :
�se� �e� is obtained via relaxation experiment as the stress
after 24 h of relaxation at imposed strain of 8%
� �se < 8 MPa�. We assume that the stress is uniform in all
inclusions and consider the case of most unfavorable load-
ing of the amorphous layers in a given inclusion, i.e. when
the layers are oriented at 458 to the tensile axis. The rate-
dependent part of the shear stress in the amorphous phase is
thent�v�a � �sv=2.

In order to identify the parameter values in a first approx-
imation, we assume that the strain rate is also uniform
throughout the material and,prior to yield, the plastic strain
rate is negligible. Then, for inclusions with amorphous
layers inclined at 458 with respect to the tensile axis the
average value of the shear rate is_g I � 3 _�e =4. The shear
rate in the amorphous phase will be_ga < _g I =xa (an impor-
tant remark is that our model works not only in the
reversible small-strain region but alsobeyond the yield
limit of the material). We takexa < 1 2 xc � 0:33.

At steady state shear the viscosity is given by

ha � t�v�a

_ga
�23�

and we can convert the experimental “macro” stress–strain
data in terms of viscosity vs. shear rate in the amorphous
phase of a single inclusion (Fig. 6). It appears that the
observed shear-thinning is of a power-law type and there
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are no signs of Newtonian plateau for viscosity even for
very small strain rates.

Some micromechanical parameters in our model cannot
be directly measured despite their physical meaning. They
can be fixed in a narrow range considering the restrictions
imposed by the experimental evidence and physics. The
average thickness of a single amorphous layer for HDPE
is about 10 nm [3]. The hypothesis of a microdomain struc-
ture requires at least two microdomains over this thickness.
We consider the initial microdomain radius to be
R0 < 2 nm.

On the contrary, the persistent lengthL for PE molecule is
of the order of 1 nm [11]. The microdomain radiusRcannot
be smaller than this value at any strain rate becauseL is the
smallest possible radius of curvature [18]. At high strain
rates,R is controlled by the rate parametersa and n in
Eq. (10). In addition,K has to be estimated before setting
the values ofa andn. For flexible molecules,K should be of
the order of 10211 4 10212 N [18] and n must be small in
order to meet the requirement of minimum microdomain
radius.

With these indications, we can proceed to a more precise
parameter identification. We make use of shear thinning
experimental results and numerical simulations with
imposed simple shear ona single inclusion. The direction
of shear is perpendicular to the lamellae normaln and the
tensor components are with respect to the coordinate frame

given in Fig. 1. This particular choice of the shear direction
enables us to eliminate the plastic deformation prior to an
imposed shear value of 0.1, and thus to obtain indicative
results for the macroscopic behavior. The slip resistances of
crystalline phase are taken from Table 1. After tuning, the
following set of parameters is obtained:R0 � 1:8 nm;
n� 0:1; K � 1:6 × 10211 N; a � 2:9 × 10221 J sn;
T � 296 K; kB � 1:38× 10223 J K21, L � 0:5 nm,
Ea � 2 MPa.

With these values, the shear thinning of amorphous phase
is compared to the experimental data in Fig. 6. The evolu-
tion of microdomain’s radius with strain rate is shown in
Fig. 7. The stress–strain curves for a single inclusion
subjected to simple shear (withxc � 0:67) at three different
strain rates are plotted in Fig. 8. The initial shear modulus
does not change when different shear rates are applied
which is due to the elastic stress in the amorphous layers.
However, the yield stress diminishes with strain rate as
observed in macroscopic experiments.

Our earlier results (see Appendix) have shown that the
shape and relationship between different stress–strain
curves obtained in simple shear for a single inclusion are
homothetic to the macroscopic ones when a tensile experi-
ment is performed. In this case, the initial shear modulus of
a single inclusion corresponds to the macroscopic initial
Young modulus and the inclusions’ yield stress in shear is
related to the macroscopic yield stress in tension.

We also performed simulations by changing the overall
crystallinity x c in the inclusion (Fig. 9). The imposed shear
rate is _e I�13� � 0:001 s21. The weakest slip system resis-
tances for different crystallinities (xc � 0:67;0:55;0:43)
are taken to be 8, 6.5, 5 MPa, respectively. The other slip
resistances have been proportionally related to the weakest
ones for each crystallinity level. From Fig. 9 it is seen that
both the initial shear modulus and the shear yield stress
decrease with decreasing crystallinity. The results obtained
are very similar to those obtained in macroscopic tensile
experiments. The relationshipg�a�=xc � constantis imposed
a priori but what is more important is that the link between
the initial shear modulus and the yield stress is obtained as a
direct result of our constitutive modeling keeping all the
parameters of the amorphous phase model unchanged.
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The model allows us to compute the energy,Wa, neces-
sary to shrink a microdomain to radiusR. With the above
parameter set, we obtainWa < 2 × 10221 J at strain rate,
_ga � 0:005 s21. At a first glance it seems to be excessively
low. However, the energy necessary to move a dislocation
in a PE crystal in order to set up plastic flow is about
1.6× 10219 J [4]. Therefore, the proposed mechanism of
microdomains’ shrinking should be active well before the
propagation of dislocations in crystals.

Next, we consider the elastic contribution to the overall
stress, �se. The rubbery shear modulus obtained from
numerical simulations isEa � 2 MPa, which gives the
number of the active strands per unit volume to be
na � 0:5 × 1027 m23. A more representative estimation is
to find the number of crystal’s unit cells which can occupy
the volume necessary for one strand to be formed. Simple
computation suggests that one strand occupies a volume
where 20 unit cells can be situated, which is a reasonable
value (a small number of cells implies that the strand’s
conformation is near crystalline state and cannot be
stretched much further which is in contradiction with the
experimental evidence).

The results obtained for a single inclusion should be
considered as a proof of the physical relevance of the
proposed model. When micro/macro computer simulations
are run (this is a work in progress), minor changes in the
parameter values are possible.

5. Conclusions

The model we presented in this paper explains the
stress–strain behavior of HDPE at small strains from a
micromechanical point of view. It is valid in the temperature
range where the amorphous phase state is above its glass
transition temperature and the crystallinity level is high
enough so that the notion ofamorphous layermakes
sense. It can be used for other semi-crystalline polymers
as long as these conditions are met.

The hypothesis of liquid-crystal-like state of the
amorphous phase (where the distortion energy of macromo-
lecules determines its viscoelasticity) suggests the existence
of microdomains, which shrink as long as shear deformation
is applied. This picture explains well the strain-rate depen-
dence of HDPE. The proposed constitutive equations
describe correctly the observed non-linear stress–strain
behavior.

The viscoplastic deformation in the crystalline lamellae is
also incorporated in the model, which extends its use
beyond yield. The relation between the initial Young’s
modulus and the yield stress for HDPE is obtained as a
result of our constitutive modeling. We introduce the
concept of the intermediate phase acting as a membrane
wrapping each lamella; it gives an interpretation of the
double yield phenomenon reported for HDPE.

The model can be naturally generalized in order to
consider the temperature and pressure effects.
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Appendix A

In a previous work [14], we developed and implemented
purely viscoplastic models for both the crystalline and
amorphous phases where the viscoplastic strain rate in a
given inclusion is given by:

_eI �
X
a

_g �a�R�a� 1
X
b

_g �b�R�b�; �A:1�

where the indexa stands for the slip systems of PE crystal-
lites andb denotes the additionally introduced slip systems
(with a common slip plane perpendicular ton) related to
interlamellar shear of amorphous layers.

The strengthg(b ) of the slip systems related to amorphous
layer deformation evolves from zero in undeformed state to
some saturation value. The evolution law proposed forg(b )

is:

dg�b�

de
� h 1 2

g�b�

gs

 !
; �A:2�

whereh controls the initial slope ofg(b )(e ) and gs is the
saturation value ofg(b ). e represents the equivalent strain
in the inclusion. At macrolevel,gs controls the yield stress
s y, whereash determines the initial Young’s modulusE.

The yield stress,s y, depends linearly on the overall crys-
tallinity, x c [3]. For crystallinity obtained from density
measurements,xa � 151 2:29snom

y with snom
y being the

nominal yield stress. On the contrary, numerical simulations
with our model allowed us to relate the true yield stress and
maximal interlamellar stressgs via sy � 4:131 2:53gs.
Hence, the relation between crystallinity andgs becomes:

xc � 23:611 5:275gs �A:3�
In the above relations,x is expressed in per cent,s y, s

nom
y

andgs are in MPa.
In order to obtain the overall behavior, we use atangent

self-consistent scheme developed in Ref. [20]. It is supposed
that the non-linear behavior of HEM can be approximated
by the following constitutive law (under imposed macro.
strain rate�_e):

�S� L tg : �_e 1 S0 �A:4�
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where �S is the deviatoric macroscopic stress,L tg is the
tensor of tangent viscoplastic moduli of HEM andS0 is a
“back stress” term, obtained in first order Taylor expansion
of �S� f � �_e�. For each inclusion, the interaction law govern-
ing the deviation� _eI 2 �_e�, can be written in the form:

SI � �S� �L tg 1 �Rtg�21� : � _eI 2 �_e�; �A:5�
whereSI is the deviatoric stress within the inclusion,�S is the
macroscopic deviatoric stress and the tensorRtg �
S0�L tg�21 accounts for the inclusion shape via the Eshelby
tensorS0.

The micro/macro constitutive model was used to simulate
a tensile test of HDPE for gas pipes at room temperature.
The nominal strain rate is�_e11 � 0:003s21. The rate
sensitivity ism� 0:1 [2]. The isotropic texture is approxi-
mated by 70 randomly oriented inclusions. The obtained

stress–strain curves using Taylor and tangent self-consistent
model are shown in Fig. 10.
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Fig. 10. Uniaxial tension of HDPE.


